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Eigenvalue Spectrum of a Dirac Particle in Static
and Spherical Complex Potential

Khaled Saaidi1,2

It has been observed that a quantum theory need not be Hermitian to have a real spectrum.
We study the non-Hermitian relativistic quantum theories for many complex potentials,
and obtain the real relativistic energy eigenvalues and corresponding eigenfunctions of a
Dirac-charged particle in complex statically and spherically symmetric potentials. Com-
plex Dirac–Eckart, complex Dirac–Rosen–Morse II, complex Dirac–Scarf and complex
Dirac–Poschl–Teller potential are investigated.
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1. INTRODUCTION

The first study carried out in the non-Hermitian quantum theory dates back
to an old paper by Caliceti et al. (1980). The imaginary cubic oscillator problem
in the context of perturbation theory has been studied in Caliceti et al. (1980). The
energy spectrum of that model is real and discrete. It shows that one may construct
many new Hamiltonians that have real spectrum, although their Hamiltonians are
not Hermitian. The key idea of the new formalism (non-Hermitian quantum the-
ory) lies in the empirical observation that the existence of the real spectrum needs
not to necessarily be attributed to the Hermiticity of the Hamiltonian. Such non-
Hermitian formalism, for the context of Schrödinger Hamiltonian has been studied
for several models in (Caliceti et al., 1980; Bender et al., 1997, 1999, 2001, 2002;
Saaidi, Trinh and Delabaerer, 2000; Delabaerer and Pham, 1998; Dorey et al., 2001;
Mezincescu, 2000; Benda and Wang, 2001; Znogil and Lavai, 1999, 2000; Bender
and Weniger, 2001; Mostafazadeh, 2002; Bagchi and Quesne, 2000, 2002; Bogchi
et al., 2001; Ahmed, 2001; Znojil, 1999; Mostafazadeh, 2003; Weigert; Bidenharn,
1962). The analysis of the related purely real spectra of energies has been performed
with different techniques. For example, resummations of divergent perturbation
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series (Caliceti et al., 1980), delta expansions (Bender, Boettcher, and Meisinger,
1999) WKB method (Delabaere and Pham, 1998) functional analysis (Mezincescu,
2000), pseudo-Hermitian methods (Mostafazadeh, 2002, 2003; Ahmed, 2001), and
complex Lee algebra (Bagchi and Quesne, 2000, 2002; Bagchi, Mallik and Quesne,
2001). Some explicit studies of the Hermitian and non-Hermitian Hamiltonians
have also been performed in the context of Dirac Hamiltonian. For example, the
solution of ordinary (Hermitian) Dirac equation for Coulomb potential, including
its relativistic bound state spectrum and wave function, was investigated in (Znojil,
1999; Mostafazadeh, 2003). Also, by adding off-diagonal real linear radial term to
the ordinary Dirac operator, the relativistic Dirac equation with oscillator poten-
tial has been introduced (Weigert, Bidenharn, 1962) then the energy spectrum of
corresponding eigenfunctions, has been obtained. The ordinary (Hermitian) Dirac
equation for a charged particle in static electromagnetic field is studied for Morse
potential (Alhaidari, 2002). The non-Hermitian formalism, for the context of Dirac
Hamiltonian, has been studied for three dimensional complex Dirac–Morse and
complex Dirac–Coulomb potentials in (Mastafa, 2003; Saaidi, Submitted).

In this paper, we consider the non-Hermitian Dirac Hamiltonian for several
complex potentials. We study a charged particle in statically and spherically sym-
metric four vector complex potentials. By applying a unitary transformation to
Dirac equation, we obtain the second order Schrödinger-like equation, therefore;
comparison with well-known non-relativistic problems is transparent. Using corre-
spondence between parameters of the two problems (the Schrödinger equation and
the Schrödinger-like equation which is obtained after applying the unitary trans-
formation to Dirac equation for a potential), we obtain the bound states spectrum
and corresponding eigenfunctions.

The scheme of this article is as follows: in Section 2, we study the non-
Hermitian version of Dirac equation for a charged particle with static and spher-
ically symmetric potential, and by applying a unitary transformation, we obtain
the proper gauge fixing condition and Schrödinger like differential equation. In
Section 3, we discuss the Dirac equation for complex Dirac–Eckart potential and
obtain the real energy spectrum and corresponding eigenfunctions. In Sec. 4, we
consider the Dirac equation for a complex Dirac–Rosen–Morse II potential, then,
we obtain the real eigenvalue and its wave function. In Sec. 5, and 6, we study the
complex Dirac–Scarf and Dirac–Poschl–Teller potentials, respectively. We obtain
the relativistic energy spectrum and corresponding wave function for the upper
component of spinors.

2. PRELIMINARIES

The Hamiltonian of a Dirac particle for a complex electromagnetic field is
(c = h = 1)

H = α̂( p̂ − e Â) + β̂m + eV (1)
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where the Dirac matrices α̂, β̂ have their usual meaning, and setting A0 equal to V.
In (1), Â and V are the vector and scalar complex field, respectively, where, Â∗ �= Â
and V ∗ �= V . Then the Dirac Hamiltonian (1) is not Hermitian. It is well known
that the local gauge symmetry in quantum electrodynamic implies an invariance
under the transformation as

(V , Â) → (V ′, Â′) =
(

V + ∂�

∂t
, Â + 
∇�

)
(2)

Here �(t , 
r ) is a complex scalar field. Suppose that the charge distribution is
static with spherical symmetry, so the gauge invariance implies that V ′ = V and
Â′ = r̂ A(r ), where r̂ is the radial unit vectror (Alhaidari, 2002). One can denoted
the correspondence wave function of (1) as

� =
(

�

χ

)
(3)

In this case one can obtain

(m + eV − Er)� = i �σ̂ · 
∇ − e(σ̂ · r̂ )A(r )�χ

(eV − m − Er)χ = i �σ̂ · 
∇ + e(σ̂ · r̂ )A(r )�� (4)

Here σ̂ ’s are the three Pauli spin matrices, Er is relativistic energy, and we replaced
ie σ̂ · Â(−ieσ̂ · Â) in first (second) equation of (4) instead of eσ̂ · Â, respectively.
Note that, because of the spherical symmetry of the complex field, the angular-
momentum operator Ĵ , and the parity operator, P̂ , commute with the Hamiltonian
and the two spinors � and χ have also opposite parity. So the correspondence
wave functions are denoted by

� = ig(r )
κ,µ(ϑ, ϕ)

χ = f (r )σr
−κ,µ(ϑ, ϕ) (5)

It is seen that

(σ̂ · 
∇)ig(r )
κ,µ(ϑ, ϕ) = iσr
κ,µ

(
∂r + 1

r
+ κ

r

)
g(r ) (6)

(σ̂ · 
∇)( f (r )σr
−κ,µ(ϑ, ϕ)) = σr
−κ,µ

(
∂r + 1

r
+ κ

r

)
f (r ) (7)

where κ̂ is the spin orbit coupling operator as

κ̂ = σ̂ · L̂ + hI (8)

and we have used from

κ̂
∓κ,µ(ϑ, ϕ) = ±κh
∓κ,µ(ϑ, ϕ) (9)
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in which

κ =
{−(l + 1) = −(

j + 1
2

)
for j = l + 1

2

l = (
j + 1

2

)
for j = l − 1

2

(10)

Therefore, by defining u1 = g(r )/r, u2 = f (r )/r , we obtain the following two
component radial Dirac equation [32]

(m + eV − Er)u1(r ) =
(

∂r − k

r
− eA(r )

)
u2(r )

(eV − m − Er)u2(r ) = −
(

∂r + k

r
+ eA(r )

)
u1 (11)

Note that, A(r ) is a guage field, which has a symmetry such as (2), therefore, it must
be fixed. It is seen that fixing this gauge degree of freedom by 
∇ · 
A ≡ ∂ A

∂r = 0 is
not a suitable choice. Remark that in this paper instead of solving Dirac equation
we want to solve the second-order differential equation, which is obtained by
eliminating one component of Eq. (11). However, for the cases which eV �= 0, the
second order differential equation is not Schrödinger like, and therefore, one can
obtain the proper gauge fixing by applying the global unitary transformation on
two components u1 and u2 such as

U =
(

a ib
ib a

)
(12)

where a, b ∈ R, and a2 + b2 = 1. By applying (12) to the upper component, φu,
and lower component, φl of spinor and institute them in (11), we have

(m − ErC)φu +
[

i(S2 − C2)

S
eV − i SEr − ∂r

]
φl = 0

[
i(S2 − C2)

S
eV − i SEr + ∂r

]
φu − (ṁ + ErC)φl = 0 (13)

where, S = 2ab, C = a2 − b2 and we have used from a gauge-fixing condition as

eV = i S

C

(
eA + k

r

)
(14)

However, we eliminate the φl component in (13), and obtain the radial differential
equation for φu as

−d2φu

dr2
+ Veffφ

u + (
m2 − E2

r

)
φu = 0 (15)

where

Veff = − (S2 − C2)2

S2
(eV )2 + 2Er(S2 − C2)(eV ) − i

(S2 − C2)

S

d(eV )

dr
(16)
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Furthermore, from (11), it is easily seen that for the cases which eV = 0 the
unitary transformation is not necessary. So, we can rewrite u1 and u2 as

u1 = φu

u2 = φl

then, by eliminating φl, one can obtain the Schrödinger-like differential equation
for radial upper component, φu as

−d2φu

dr2
+ Veffφ

u + (
m2 − E2

r

)
φu = 0 (17)

where

Veff =
(

eA(r ) + κ

r

)2
− d

dr

(
eA(r ) + κ

r

)
(18)

3. THE COMPLEX DIRAC–ECKART POTENTIAL

The complex Eckart potential which holds discrete energy spectrum is (Znoj:1,
1999)

V CE(x) = A(A − 1)

sinh(x)
− 2i B coth(x) (19)

and the corresponding Schrödinger equation is

− d2

dx2
+ A(A − 1)

sinh(x)
− 2i B coth(x) − Eψ(x) = 0 (20)

Here A, B ∈ R. It is obviously seen that the Eckart potential is singular in origin,
but one can simply avoid their singularities by a local deformation of the integration
path. In [22] by solving the Schrödinger equation (20), the real energy spectrum
and corresponding wave functions were found as

En = B2

(A − n)2
− (A − n)2, n = 1, 2, . . . , nmax < A (21)

and

ψn(x) = Nn(coth(x) − 1)µ(coth(x) + 1)ν P (2µ,2ν)
n (coth(x)) (22)

where Nn is a normalization constant, P (2µ,2ν)
n is Jacobi polynomial3 and

2µ = (A − n)

2ν = − i B

A − n
(23)

3 P (2µ,2ν)
n (x) is Jacobi polynomial throughout this article.
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Now by defining the complex Dirac–Eckart four vector potential as

(eV (r ), eA(r )r̂ ) =
(

iζ coth(r ),

(
Cζ

S
coth(r ) − κ

r

)
r̂

)
, (24)

and by using (16), we can obtain

Veff = η(η − 1)

coth2(r )
− iγ coth(r ) − η2 (25)

where ζ ∈ R, η = ζ

S (S2 − C2) and γ = 2Er(C2 − S2)ζ . So that the second-order
differential equation for radial upper component is(

− d2

dr2
+ η(η − 1)

coth2(r )
− iγ coth(r ) − (

E2
r + η2 − m2

))
φu

n(r ) = 0. (26)

Comparing (26) with (20) and then using (21) and (22), one can arrive at the
relativistic real energy eigenvalue as

Ern =
[

[m2 − η2 − (η − n)2](η − n)

[(1 − 2S)η − n][(1 + 2S)η − n]

] 1
2

(27)

in which

|ηmax − η| <
√

η2 − m2 (28)

and the correspondence wave function for φu
n(r ) is the same eigenfunction in (22)

with a new set of parameters as

2µ = (η − n)

2ν = − iγ

η − n
= − iγ

2µ
(29)

4. THE COMPLEX DIRAC–ROSEN–MORSE II POTENTIAL

The Schrödinger equation for complex Rosen–Morse II potential is

−d2ψ(x)

dx2
+ V CRM(x)ψ(x) − Eψ(x) = 0 (30)

where

V CRM(x) = [(bR + ibI)
2 + q2 − 1/4] cosch2(x) − 2q(br + ibI) cosh(x) coth(x)

(31)

One can rewrite (30) as

−d2ψn(x)

dx2
+ V CRM(x)ψn(x) = −(q − n − 1/2)2ψn(x) = 0 (32)
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which shows that

En = −(q − n − 1/2)2 (33)

where

n = 0, 1, 2, . . . , nmax < q − 1/2 (34)

and also q > 1/2. Hence, we define the Dirac–Rosen–Morse II four vector poten-
tial as

(eV (r ), eA(r )r̂ ) =
(

0,
[
ζ coth(r ) − (ηR + iηI) cosch(r ) − κ

r

]
r̂
)

(35)

Here, ζ, ηR, ηI ∈ R. By making use of (18), we find the effective complex Dirac–
Rosen–Morse II potential, V CDRM

eff (r ), as

V CDRM
eff (r ) = [(ηR + iηI)

2 + (ζ + 1/2)2 − 1/4] cosch2(r )

−2(ζ + 1/2)(ηR + iηI cosch(r ) coth(r ) + ζ 2 (36)

Using (36), we obtain the following second-order differential equation for the
upper component, φu(r ),⌈

− d2

dr2
+ [(ηR + inI)

2 + (ζ + 1/2)2 − 1/4)] cosch2(r )

−2(ζ + 1/2)(ηR + iηI cosch(r ) coth(r )

⌉
φu

n(r )

= (
E2

rn − m2 − ζ 2
)
φu

n(r ) (37)

Comparing (37) with Schrödinger equation for complex Rosen–Morse II potential,
(31), gives the following real relativistic energy spectrum for complex Dirac–
Rosen–Morse II potential as

Ern =
√

m2 + ζ 2 − (ζ − n)2) (38)

where n = 0, 1, 2, . . . , nmax. Here, ζ > 0, and reality of energy spectrum emphasis
that nmax satisfy

|nmax − ζ | <
√

m2 + ζ 2 (39)

5. THE COMPLEX DIRAC–SCARF POTENTIAL

In Znojil (1999), the complex Scarf potential and the corresponding
Schrödinger equation is given in the form

V CS(x) = [bR + ibI)
2 − q2 + 1/4] sech2(x) − 2q(br + ibI) sech(x) tanh(x) (40)
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� − d2

dx2
+ [(

bR + ib2
I − q2 + 1/4

]
sech2(x)

−2q(br + ibr) sech(x) tanh(x) − E�ψ(x) = 0 (41)

It is well known that the Schrödinger equation of this potential is exactly solvable.
It is easily seen that this complex potential (40) is not invariant under PT-symmetry,
but, for the cases which bR = 0, is PT-symmetry invariant (where P denotes the
parity operator; (Pψ)(x) = ψ(−x) and T the time reversal operator; (T ψ)(x) =
ψ∗(x)). For q > 1/2, the associated eigenvalues and eigenfunctions are

En = −(q − n − 1/2)2, n = 0, 1, 2, . . . , nmax < q − 1/2 (42)

ψn(x) = Nn sechq−1/2(x)eibI arctan(sinh(x)) P (−bI−q,bI−q)
n (i sinh(x)) (43)

Therefore, we define the complex Dirac–Scarf four vector potential as

(eV (r ), eA(r )r̂ ) = 0, (ζ tanh(r ) −
(

ηR + inI sech(r ) − k

r

)
r̂ (44)

Here, ζ, ηR, ηI ∈ R. By making use of (18), we find the effective complex Dirac–
Scarf potential, V CDS

eff (r ), as

V CDS
eff (r ) =

⌈
(ηR + iηI)

2 − (ζ + 1/2)2 + 1/4)
⌉

sech2(r )

−2(ζ + 1/2)(ηR + iηI) sech(r ) tanh(r ) + ζ 2 (45)

By substituting (45) in (18), we have

� − d2

dr2
+ [(ηR + inI2 ) − (ζ + 1/2)2 + 1/4)] sech2(r )

−2(ζ + 1/2(ηR + inI) sech(r ) tan(r )�φu
n(r ) = (

E2
rn − m2 − ζ 2

)
φu

n(r ) (46)

Comparing (46) with Schrödinger equation for complex Scarf potential, (40), gives
the following real relativistic energy spectrum for complex Dirac–Scarf potential
as

E2
rn − m2 − ζ 2 = −(ζ − n)2 (47)

and the corresponding eigenfunction as

ψn(r ) = Nn sechζ (r )eiηI arctan sinh (r)) p−ηI−q,ηI−q)
n (i sinh(r )) (48)

Therefore, for ζ > 0 the real relativistic bound state energy eigenvalue is

Ern =
√

m2 + ζ 2 − (ζ − n)2), n = 0, 1, 2, . . . , nmax (49)

where, nmax is the largest positive integer which satisfy

|nmax − ζ | <
√

m2 + ζ 2 (50)
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6. THE COMPLEX DIRAC–POSCHL–TELLER POTENTIAL

The complex Poschl–Teller potential is (Znojil, 1999)

V CPT(x) = M(M − 1)

sinh2(t)
− N (N + 1)

cosh2(t)
(51)

where t = x − iε, x ∈ (−∞, +∞), ε ∈ (0, π/2) and M, N ∈ �. In this case,
V CPT(x) is not singular at x = 0. In [22], the real eigenvalues and correspond-
ing eigenfunctions of the potential (51) were found by solving the Schrödinger
equation. It is found

En = −(2n + σ N + τ M + (τ − σ )/2)2, n = 1, 2, . . . , nmax <

− 1
2 (σ N + τ M + (τ − σ )/2) (52)

where τ = σ = ±1 and

ψn(x) = Nn sinhτ M (t) coshσ N+1(t)P (τ M−1/2,σ N+1/2)
n [ cosh(2t)] (53)

So, by defining the complex four vector as

(eV (r ), eA(r )r̂ ) =
(

0,
(
ζ tanh(t) − η coth(t) − κ

t

)
r̂
)

(54)

where t = r − iε, r ∈ [0, ∞), ε ∈ (0, π/2) and ζ and η are real. We can obtain
V CDPT

eff as

V CDPT
eff (r ) = −ζ (ζ + 1) sech2(t) + η(η + 1) cosch2(t) + (ζ − η)2 (55)

Therefore, the second-order differential equation for the upper spinor component
of Dirac equation for Complex Dirac–Poschl–Teller is⌈

− d2

dr2
+ η(η + 1)

sinh2(t)
− ζ (ζ + 1)

cosh2(t)
− (

E2
rn − m2 − (ζ − η)2

⌉
φu

n (t) = 0 (56)

By comparing (56) with the associated Schrödinger equation of the complex
Poschl–Teller potential, (51), we can obtain the relativistic real energy spectrum
as

Ern =
√

m2 − (ζ − η)2 − (2n + σζ + τη + (τ − σ )/2)2 (57)

where n = 1, 2, . . . , nmax which, nmax satisfy

2nmax <
√

m2 − (ζ − η)2 − (σζ + τη + (τ − σ )/2) (58)

and also the upper spinor component, φu
n(r ), is

φu
n(r ) = Nn sinhτη(t) coshσζ+1(t)P (τη−1/2,σζ+1/2)

n [ cosh(2t)] (59)

where Nn is normalization constant and P (µ,v)
n is Jacobi polynomial.
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7. CONCLUSION

The non-Hermitian quantum theories have been studied for many complex
potentials. It is observed that a relativistic quantum theory need not to be Hermitian
to have a real spectrum. In this paper, we obtain the real relativistic energy eigen-
values of a Dirac–charged particle in complex statically and spherically symmetric
potentials. We show that these complex Dirac potentials have exact solution for
all value of κ(κ is angular momentum quantum number).
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